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Abstract— Aerial filming in action scenes using a drone is
difficult for inexperienced flyers because manipulating a remote
controller and meeting the desired image composition are two
independent, while concurrent, tasks. Existing systems attempt
to utilize wearable GPS-based or infrared-based sensors to
track the human movement and to assist in capturing footage.
However, these sensors work only in either indoor (infrared-
based) or outdoor environments (GPS-based), but not both.
In this paper, we introduce a novel drone filming system
which integrates monocular 3D human pose estimation and
localization into a drone platform to remove the constraints
imposed by wearable-sensor-based solutions. Meanwhile, given
the estimated position, we propose a novel drone control
system, called ‘“through-the-lens drone filming”, to allow a
cameraman to conveniently control the drone by manipulating
a 3D model in the preview, which closes the gap between the
flight control and the viewpoint design. Our system includes
two key enabling techniques: 1) subject localization based on
visual-inertial fusion, and 2) through-the-lens camera planning.
This is the first drone camera system which allows users to
capture human actions by manipulating the camera in a virtual
environment. From the drone hardware, we integrate a gimbal
camera and two GPUs into the limited space of a drone and
demonstrate the feasibility of running the entire system onboard
with insignificant delays, which are sufficient for filming in our
real-time application. Experimental results, in both simulation
and real-world scenarios, demonstrate that our techniques can
greatly ease camera control and capture better videos.

I. INTRODUCTION

The availability of intelligent drones makes it more con-
venient and accessible to manually capture aerial footage.
However, it is still very challenging to manipulate multiple
control sticks in a remote controller to capture human
movement from a desired viewpoint. While moving control
sticks can directly control a drone’s motion parameters (i.e.
roll, yaw, pitch, and throttle), controlling these parameters
do not offer a precise control of the movement of objects
in the camera screen. Compared with the direct control of
the drone’s parameters, through-the-lens camera control [1]
parameterizes the camera pose in terms of azimuth, elevation,
and radius in a subject-centered spherical coordinate system
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Fig. 1.
scene. (2) Camera View. (3) The preview of 3D human model estimated
from camera view. (4) User manipulates the 3D model in the preview to
design the viewpoint.

Overview of the through-the-lens drone filming. (1) The filming

rather than six degrees of freedom (DOF) in a reference-
fixed Cartesian coordinate system. Through-the-lens camera
control allows a user to drag or zoom in (out) the subject
in the image space to adjust the image composition. This
control mode greatly simplifies viewpoint control of a mov-
ing subject, so it is widely used in action games and 3D
animation. Introducing through-the-lens control operations
to drone filming can greatly reduce the difficulty of the
manual control and allow a cameraman to focus more on
the viewpoint selection.

However, it is difficult to apply this subject-centered
control mode in real-world scenarios because the subject’s
position cannot be directly obtained like computer graphics.
Some studies [2] [3] [4] localize the subjects by wearable
sensors (e.g. GPS, Vicon) to assist in the drone filming, but
these sensors are constrained to specific environments. For
example, the GPS-based sensors work only in an outdoor en-
vironment. In addition, the wearable-sensors-based solutions
are ineffective for unknown targets.

Some researchers [5] [6] [7] [8] use vision-based methods
and the prior knowledge of a subject’s height to localize the
subject. These methods work in both indoor and outdoor
environments. Lim et al. [7] localizes the subject based on
the position and size of the bounding box estimated from



person detection, but the size of the bounding box is sensitive
to the person’s pose (e.g. Bending over outputs the smaller
bounding box than stretching), which affects the localization
accuracy. More sophisticated methods [S] [6] [8] adopt
3D human pose estimation to improve subject localization.
Because the output of 3D pose estimation loses the absolute
scale and depth, the actual height of the subject is required
to recover the scale and depth. However, it is not always
feasible to request a user to input the height of each subject
in unknown scenes.

To address the above challenges, we propose an effi-
cient drone filming mode, called “Through-the-Lens drone
filming” (see Fig. 1), which is enabled by the following
techniques:

1. An automatic subject localization method without the
prior knowledge of a subject’s height. We utilize the drone’s
motion information and the normalized 3D human pose to
estimate the subject’s height. With the estimated height, we
can localize the subject accurately during filming.

2. An effective interaction that allows the user to control
the drone by manipulating the virtual camera in the preview
of a 3D model. In addition, our system can convert the de-
sired viewpoints in the virtual environments to a physically-
feasible trajectory in the true metric space.

To facilitate users’ real-time operation, we mount two
GPUs (NVIDIA Jetson TK1 and TX2) on a DJI Matrix 100
drone. In addition, we develop an Android app to provide
through-the-lens drone control.

The contributions of this paper are three-fold. First, the
localization does not require the prior knowledge of the sub-
ject’s height, which broadens the application of the system
to unknown scenes. Second, the proposed through-the-lens
drone filming simplifies the manual control for capturing
the subject-focused shot and enables the user to customize
the viewpoint for moving subjects in real-time. Third, we
optimize the implementation of the entire system based
on the limited computation resource of a drone platform,
including 2D skeleton detection, 3D pose estimation and
localization, and camera trajectory planning, and demonstrate
the feasibility of running the system in approximately real-
time.

We discuss related work in Sec. II, and introduce subject
localization in Sec. III, followed by camera trajectory plan-
ning in Sec. IV. The system architecture is in Sec. V. In Sec.
VI, we present the simulation and experimental results based
on real-world scenarios. We conclude the paper in Sec. VII.

II. RELATED WORK

Camera Control: Through-the-lens camera control
[1] has been widely used in virtual cinematography
[9] [10] [11] [12] and action games [13] [14]. However,
these techniques are not feasible in real-world scenarios
because a subject’s position cannot be directly obtained like
in virtual environments. Some researchers [2] [3] [4] use
wearable sensors to localize a subject and automate filming
for some predefined shots. In addition to the constraints

imposed by sensors, their systems do not provide an efficient
interaction for users to design desirable viewpoints.

Subject Localization: The GPS-based [2] and the
infrared-based [3] [4] wearable sensors are widely used
for subject localization. However, the GPS does not work
in the indoor environments, and the infrared-based sensors
are restricted to the indoor environment because of their
optical properties. Furthermore, it is not convenient to require
every subject to wear sensors for filming. The vision-based
localization frees the subject from wearable sensors, but the
related work [5] [6] [7] requires the user to provide the
subject’s height, based on which to compute the global trans-
lation under perspective projection. However, these methods
become invalid for users with unknown heights. Besides,
Huang et al. [15] utilizes a stereo camera mounted on the
drone to localize the subject, but its field of view is subjected
to the drone body and cannot efficiently track the subject
when the drone or the subject is moving.

ITII. SUBJECT LOCALIZATION BASED ON
VISUAL-INERTIAL FUSION

In this section, we introduce subject localization based
on visual-inertial fusion. Because skeleton-based localization
[5] [6] is robust for the varying pose of the subject, and a
full 3D model can facilitate users to operate the camera,
we adopt the monocular 3D human skeleton estimation
(Sec.IIl.A) as baseline. As mentioned above, skeleton-based
methods require a known height to recover the scale and
depth of the normalized 3D pose. Fig. 2(a) shows that
incorrect height inputs render biased localization. Under an
undistorted perspective projection, the localization error is
proportional to the error between the actual and the assumed
height. Figs. 2(b)(c) show that a subject’s positioning infor-
mation from different camera viewpoints may differ when
the assumption is inconsistent with the true height, so our
intuition is to find an optimal height which can minimize the
bias caused by the camera’s movement. Compared with the
conventional multi-view 3D reconstruction, the scale range
of a human subject is limited (we set the height range for
an adult between 1.4m and 2.2m in the proposed system
to reduce the search space). In addition, the normalized 3D
poses contain an inherent structure among 3D points cloud
and thus, in turn, make it feasible to localize the subject
from a moving camera, even when the subject is moving.
The proposed subject localization includes three steps: 1)
monocular camera 3D human pose estimation, 2) scale and
depth initialization, and 3) global subject localization.

A. Monocular Camera 3D Human Pose Estimation

We extract 3D human pose from the images captured by a
gimbal camera. This task consisted of two steps: First, we use
OpenPose [16] to detect 14 2D joints, including the head,
nose, left and right hip, shoulders, elbows, hands, knees,
and feet. Second, we use a sequence-to-sequence network
proposed in Hossain et al [8] to estimate 3D pose from
a sequence of 2D joints. To address incomplete 2D joint
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Fig. 2. (a) The localization error for a person with 1.8m height standing
in front of a camera (x- and y-focal length is 380 pixel without distortion)
by 5m. The x-axis represents the height guess and y-axis represents the
error of localization in depth. (b) The camera view captured from Cam 2.
(c) A static subject with 1.8m height stands in the groundtruth position
(red skeleton). The blue and green skeletons are estimated based on 1.6m
assumption from Cam 1 and Cam 2 placed 5 meters away from the subject in
different directions. The estimated position from different viewpoints differs
from each other.

estimation caused by occlusion, we use the value in the
previous frame to compensate for the missing space of the
current frame. Because the input of the network [8] has
been normalized to zero mean and a standard deviation of
1, the estimated 3D pose loses the absolute scale and depth
information.

B. Scale and Depth Initialization

This subsection introduces how to recover the scale and
depth of a normalized 3D pose by a moving camera. We
start with notation definitions. We denote ()" as the world
frame, which is initialized by the drone’s navigation system.
()¢ is the camera frame and (-)” is the image frame, where
the origin is the center of the screen. We assumed that
the camera model is weak perspective projection and the
subject’s movement is smooth during initialization, we define
the following optimization function to minimize two terms
1) F': the image projection error from 3D joint locations, and
2) G: the temporal smoothness of the subject’s displacement.
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where 7 and N are the size of the temporal window
and the number of joints. Based on the assumption of
smooth movements, the scale between the true height and
the normalized 3D pose during the time interval [0, 7] shares

the same «.. Because 3D joints spread in the depth direction
is negligible compared to its distance to the camera, we only
use one T to represent the relative position between each
joint and camera coordinates at time ¢. py ,, and Ptfn are the
n-th 2D joint locations and the normalized 3D pose at time
t respectively. K represents the camera projection matrix. A
is the parameter to balance the penalty between projection
error and smoothness constraints.

We propose a simple yet highly efficient method to ini-
tialize the scale. First, to quantify the relation between scale
a and the camera-subject relative position 7¢ in camera
projection Eq. 2, we use the method in [5] to describe
T¢ = (Ty,T,,T¢) as expressed in Eq. 3.
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where p, and p, are the average values of x and y of 2D
joints, P, and Py are the average values of z and y of the
normalized 3D joints. H is a matrix consisting of the focal
length f, and f,.

Second, because T is proportional to o in Eq. 3, we
rewrite T¢ as aTf, where T can be considered as the
relative position of the normalized 3D pose in camera
coordinates. We can solve « by substituting ath into Eq. 4.
The o in Eq. 5 is set as the estimated scale. Note that if the
estimated height is beyond a reasonable range (1.4m-2.2m
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exceeds a threshold (0.4 in our experiments), we move the
temporal sliding window to restart the initialization.

in our experiments), or the variance of
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C. Global Subject Localization

Once we finish scale initialization, we can estimate the
subject’s global position based on Eq. 6 for the following
frames.

P = aRYTS + T (6)
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Fig. 3.

D. Discussion

In this subsection, we discuss how to move the camera
to optimize the localization performance. Considering that
the uncertainty of the depth is a function of the length of
the baseline between different views, the drone automatically
moves sideways to collect 15 images of a subject within a
period of 2 seconds to estimate the height. Our strategy is
partially motivated by DJI Spark’s “ShallowFocus” mode in
which a drone creates the effect of shallow depth of the field
from 15 images captured during its automatic rising within
20cm. We do not adopt the strategy of elevating the drone
to collect images because the change of elevation is likely
to degrade the performance of pose estimation.

Scale estimation can possibly be affected by noisy mea-
surements from the navigation system. We neglect the noise
of the rotation because the camera gimbal stabilization
system can achieve accurate and consistent rotation mea-
surements. To evaluate the localization performance with
respect to different initialization states, we design simulation
experiments to evaluate the localization error with respect to
different camera displacements, camera-subject distance and
different levels of noise. For these experiments, we select
42 downsampled motion capture data ( average 140 frames,
8 fps, including standing, jumping, sitting, climbing and
walking) from Carnegie Mellon University Motion Capture
Dataset. We set the height of the 3D model as 1.8m.

First, we tested the localization error when the subject
has no displacement in the space during initialization, where
the subject’s center is fixed to the origin of the world
coordinate system. Based on the physical property of the
drone’s navigation system, we evaluated the localization error
when the camera’s translational displacements are 0.4m,
1.2m and 2.0m respectively and the standard deviation of
the positioning noise is 0.00m, 0.04m, 0.08m and 0.12m
respectively. Considering the subject’s safety and the maxi-
mum distance of 3D pose estimation, we set the range of the
camera-subject distance as [3-11]m. Fig. 3 shows that the
larger displacement can improve the localization accuracy.
In addition, it is harder to localize the subject if the subject
is far away from the camera during initialization. This can
be explained that the resolution of the limb decreases when

Localization error in terms of different initialization states (camera-subject distance, noise levels and camera displacement)

the subject moves away from the camera, increasing the
image projection error of the subject. In particular, when
the displacement is 0.4m, the increasing noise impacts the
performance more obviously as the camera-subject distance
increases.

Second, we tested the performance of localization when
the subject is free to move within a region during initializa-
tion, where the radius of the moving region is set as [0.3, 0.5,
1.0, 2.0]m. We also set zero displacement (radius = Om) as
a reference. This comparison focuses on the case when the
camera’s displacement is 1.2m and the standard deviation
is 0.12m. For cases of other displacement and standard
deviation values, the trends are similar. Fig. 4 indicates that
the localization becomes worse as the moving region is
widened.
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Fig. 4. Localization error with respect to different initialization states

(subject’s moving regions and camera-subject distance).

From simulation results, we can draw the conclusion that
the localization accuracy is determined by a set of initializa-
tion states including the subject’s movement, the camera-
subject distance, the positioning noise and the length of
camera’s displacement. The localization error, greater than,
say, 1.0m, will affect the subject’s safety and thus cannot be
allowed. Therefore, to achieve accurate localization within
an allowable range, we better choose the moment when the
subject is fairly static and set a closer viewpoint to launch
initialization.



IV. THROUGH-THE-LENS CAMERA PLANNING

In this section, we introduce through-the-lens camera
control and trajectory planning. First, we introduce how a
user manipulates the 3D preview to design the viewpoint.
Second, we describe a novel automatic filming mode to track
the moving subject. Third, we present our trajectory planning
strategy to handle these tasks.

A. Through-the-lens Viewpoint Control

This section starts with a short description of the User
Interface (illustrated in Fig. 5(A)). The 3D model is rendered
by OpenGL based on the normalized 3D pose. Our system
allows the user to touch the screen to move the camera view
while keeping the position of the 3D object fixed. A user can
adjust the viewpoint by rotating and zooming the 3D model
and command the drone to capture the desired viewpoint.
Through-the-lens control includes:

Fig. 5. (A) User Interface of the through-the-lens viewpoint control is
consisted of the camera, including a camera view (the upper window) and a
3D model preview (the lower window). The user moves the virtual camera
by (B) rotating the 3D model or (C) zooming the 3D model in the 3D model
preview window.

Rotate: Swipe the screen to orbit the virtual camera in the
horizontal and vertical direction (illustrated in Fig. 5(B)).

Zoom: Spread or pinch the screen to change the field of
view of the virtual camera (illustrated in Fig. 5(C)).

We denote (-)* and (-)¥ as the position of the drone
(camera) and the subject in the world coordinates respec-
tively. In addition, we use (-)¢ to describe the pose of the
virtual camera in the virtual 3D environment. Once the user
publishes the desired viewpoint to the drone, our system will
map the state of the camera (P(z, y, z), yaw) from the virtual
3D environment to the true world space as follows:

PY = RY(BP? +T°) +T"

wo o w o
yaw, = R"yaw;

(7

where [ is a constant to amplify camera-subject distance
for safety.

B. Subject-Oriented Tracking

The above interface allows the user to manipulate 3D
model to set the viewpoint. To facilitate users to track the
moving person from the desired viewpoint, we further extend
it with an automatic filming mode: subject-oriented tracking.
In this mode, once the user sets the virtual viewpoint of the
subject, the camera will track the subject from a fixed relative
position between the subject and the camera. To this end,
our system automatically analyzes the subject’s skeleton to
estimate its orientation. Considering that the direction of two
shoulders are normally parallel to the ground, we denote (-)*
as the subject-oriented coordinates, where three axes can be
defined as follows:

zZ =z

5 = pf’s - plcs N (8)
norm(pg, — pi;)

yS:Zsz:S

where pf, and pf, denote the 3D positions of the left
shoulder and the right shoulder in the camera coordinates.
z¢ denotes the z-axis of the camera coordinates. The rotation
matrix R from camera to subject coordinates is described
as (z°, y°, z°). Once the user sets the tracking viewpoint,
our system records the pose of the virtual camera P’ and

yaw? in the subject coordinates. The corresponding tracking
viewpoint in the world space can be expressed as follows:

P¥ = R¥(BR®P® +T°) + T"

yawy = RYRyaw?

(©))

C. Trajectory Planning

This subsection discusses generation of a feasible path
given the customized viewpoints. First, we require the cam-
era to move along the spherical surface centered around the
subject P;’ to achieve visual-pleasing footage and avoid
collision with the subject. Therefore, we adopt Spherical
Linear Interpolation (Slerp) [17] to uniformly interpolate
a set of intermediate waypoints between the current position
Py, and the desired position P  along an arc. The

now
interpolated points are described as follows:

sin((1 — ) *0)

PY — pw _pv
c,t ‘ sinb *( c,now s )
(L k0
Sy 0) e PRy 4P =1, N
sind ’
(10)
where 6 is the angle between P, —P,” and P’ . — P,

and N is the number of interpolated points. In particular, if
P is in the middle of a line between P, ,, and P2, .,
Eq. 10 will be reduced to a linear interpolation, rende}ing
that the camera moves across the subject. In order to keep a
safe camera-subject distance, we add the midpoint P, of
the semicircular arc as the interpolated point.

Second, we use a simple and efficient polynomial op-
timization algorithm to perform trajectory planning under

the physical constraints of an aerial robot. We model the



trajectory as a piecewise polynomial, which is parameterized
to the time variable ¢ in each dimension z, y, z and yaw.
The trajectory of each dimension can be written as follows:

L= pit/ telo,T],

Jj=0

Y

where p; is the jth order polynomial coefficient of the
trajectory, and 7' is the total time of the trajectory, which
is calculated by the segment length, maximum velocity and
acceleration based on trapezoidal acceleration profile [18].
The polynomial coefficients are computed by minimizing
the integral of the square of the k" derivative along the
trajectory. Instead of solving the optimization problem in
[19], we minimize the snap (i.e. k = 4) along the trajectory
and integrate the coefficients in all x, y, z, yaw dimensions

into one single equation:
2
Tt @)
———= | dt.

The objective function can be written in a quadratic formu-
lation p?' Qp , where p is a vector containing all polynomial
coefficients in all four dimensions of z, y, z and yaw and
@ is the Hessian matrix of the objective function.

To ensure the feasibility of the trajectory, we also define
the following constraints:

1) Waypoint Constraint: If there exists a waypoint at a
temporal point 7', we have

fu(T) =dr.
2) Continuity Constraint: The trajectory must be continu-
ous at all the k*" derivatives at each waypoint between two
polynomial segments:
i (k) T (k)
lim fu (T) - J(l_lg’;,h fp, (T)

x—T—

J =

pe{ay,z yaw}

(12)

13)

(14)

Both constraints can be compiled into a set of linear
equality constraints (Ap = d) as described in [20]. Thus,
the trajectory generation problem can be reformulated as a
quadratic programming problem:

min  p’ Qp

. (15)
subject to Ap =d.

In practice, we need to check whether maximum velocity
and acceleration of the trajectory exceed the physical limits
of an aerial robot. If the trajectory is infeasible, we increase
the flight time 7T and recalculate Eq. 15 to get a new
trajectory. We then re-check the feasibility of the trajectory
until it meets the requirement. In our implementation, we
only check the trajectory at most five iterations and increase
the time 7" by 1.2 times in each iteration. The maximum
acceleration and velocity is set to 2.5m/s? and 1.5m/s. If
the trajectory is still infeasible after five iterations, we do not
move the camera. In most cases, we can obtain a feasible
trajectory within two iterations. In addition, we limit the
minimum height of the drone to 1m to avoid moving virtual
camera below the subject and colliding with the ground. Last

but not least, the gimbal camera can automatically adjust its
orientation to place the center of the subject’s 2D skeleton
in the center of an image.

V. SYSTEM ARCHITECTURE

The system architecture is shown in Fig. 6. In the percep-
tion module, we extract the normalized 3D skeleton from
the result of 2D skeleton detection. We estimate the scale
by fusing the normalized skeleton and motion data from the
drone’s navigation system. After the scale is estimated, we
can localize the subject in the world space. In the planning
module, the system receives the virtual camera pose from the
mobile device and estimates the user’s desired viewpoint.
Then the trajectory planning converts the waypoints to a
feasible trajectory. The drone is commanded to fly along the
trajectory and capture the footage.

Perception
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Scale
Estimation

Subject
Localization

Global 3D Skeleton

Acc.
Gyro.

MU
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Planning

Viewpoint

Controller
Estimation
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Fig. 6. The architecture of the system

TABLE I
RUNTIME OF DIFFERENT MODULES

GPU Module Runtime(ms)
TX2 2D Skeleton Detection 218.47
2D-to-3D Estimation 37.44
Scale Estimation 28.16
Manifold Subject Localization 9.40
Viewpoint Estimation 12.09
Trajectory Planning 33.87

We integrate processors and gimbal camera into a DJI
Matrix 100 as Fig. 7 shows. We use the DJI Guidance System
to provide positioning information. We choose a powerful
GPU the NVIDIA Jetson TX2 to run GPU-based 2D skeleton
detection. Meanwhile, we use the DJI Manifold (customized
Jetson TK1) to decode the video of the onboard gimbal
camera and to communicate with the DJI Guidance System.
As a result, we use a combination of one Jetson TX2 and
one Manifold to run the whole system simultaneously. The
256 GPU cores in the TX2 make it particularly suitable for
parallel computing of body keypoints detection. Compared
with the Jetson TX2, the Manifold is less powerful and it is
equipped with 192 GPU cores. We choose the Zenmuse X3
Gimbal Camera for capturing stabilized footage and record
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Fig. 7.

The prototype drone based on through-the-lens control

the footage with a resolution of 1280x720. To reduce the
computation delay, each frame is downsized to 304x176
before further processing.

Table I shows the runtime of different modules for each
frame. We deploy different modules to the two GPUs based
on their computation complexity. More precisely, one GPU
is dedicated for 2D skeleton detection, and the other GPU
covers the rest of the computations. Both GPUs are powered
by the battery of the DJI Matrix 100 and are connected using
an Ethernet cable. Communication between two computers
is done by utilizing the ROS infrastructure. The system
takes about 300ms to respond to the user’s input, which is
sufficiently fast for our filming application.

VI. EXPERIMENTS
A. Subject Localization

In this section, we test the localization accuracy of our
system on 8 persons (1.6m-1.9m) in real filming. We set
the camera-subject distance during initialization as 5m and
allow the subjects to move. Fig. 8 illustrates that our system
can achieve sufficient location accuracy (error is less than
1.0m) in real scenes within 7m camera-subject distance. The
localization bias becomes more obvious when the camera-
subject distance is farther than 7m. This trend is quite
intuitive as decreasing the subject size in the image increases
the difficulty of 2D skeleton detection, where the incorrect
3D skeleton further degrades the localization accuracy.

B. Camera Planning

In this section, we evaluate the footage captured from
two modes: through-the-lens viewpoint control and subject-
oriented tracking. We start with subject-oriented tracking in
the simulation. We use the distance between the current and
the desired camera position to measure the tracking error.
We tested 3 motion capture data (walking, dancing and Tai
Chi, average 1300 frames, 30 fps) from the CMU Motion
Capture Dataset. We set the height of the 3D model as 1.8m
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Fig. 8. Localization error in terms of different moving regions (during

initialization) and camera-subject distance (after initialization).

and the maximum speed and acceleration as 1.5m-s~! and

1.0m-s~2, respectively. Meanwhile, we set the viewpoint
to focus on the frontal direction of the subject by 3.5m.
We use the average speed of the desired viewpoint (ASDV)
to describe the intensity of the human movements. Table
IT shows that our system can reach the desired viewpoint,
with a tracking error less than 1.0m, for different human
movements.

TABLE 11
SUBECT-ORIENTED TRACKING ON DIFFERENT MOVEMENTS

Motion Description | ASDV (m/s) | Tracking Error (m)
Walk 0.11 0.12
Tai Chi 0.47 0.39
Dance 1.04 0.53

For the real-world scenes, we compare the actual and
desired viewpoints in both modes. Fig. 9(a) shows that when
the user customizes the viewpoint by zooming in, rotating
horizontally and vertically, the viewpoints of the captured
footage match the desired viewpoints of 3D model in the
through-the-lens viewpoint control mode. Fig. 9(b) shows
that the proposed subject-oriented tracking enables the drone
to capture the subject from a consistent viewpoint, even when
the subject is moving and rotating. The attached demo video
confirms high accuracy and impressive performance.

C. Discussion

The current system works well when the subject’s limbs
are clearly visible, but it becomes difficult for users to
manipulate the drone when the human pose cannot be
accurately recognized. Fig. 10(a) shows that the limb of the
subject is vague due to a long camera-subject distance. In
addition, the camera viewpoint also affects the 3D model
visualization. Fig. 10(b) shows that a sharp angle decreases
the body’s visibility and makes it difficult to recognize the
limbs. These problems are partially due to the fact that
our system processes resized images (304x176) to reduce
the computation delay. We plan to compress the current



(b) Subject-Oriented Tracking

Fig. 9. The actual viewpoint in real-world filming and the desired viewpoint of the 3D model (the subfigure on the right-bottom). (Top) The snapshot
of through-the-lens viewpoint control. The user controls the drone by manipulating the 3D model. (Bottom) The snapshot of the subject-oriented tracking.
The user sets the desired viewpoint as the front-right direction in the 3D preview window (first from the left), and then the drone camera keeps tracking

the subject from the customized viewpoint.
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Fig. 10.
making it difficult for user to visualize the 3D model.

The viewpoint and distance affects the 2D skeleton detection,

2D skeleton network to process a larger-size image and to
perceive a greater range.

VII. CONCLUSION

We propose a novel and efficient drone filming mode:
through-the-lens drone filming, where the user can capture
the visual-pleasing footage by manipulating the 3D model of
the target. This mode closes the gap between the controller
manipulation and viewpoint design and greatly reduces the
difficulty of drone control for inexperienced flyers. The pro-
posed system comprises two modules: 1) subject localization
based on visual inertial fusion, and 2) through-the-lens cam-
era planning. Compared with the state-of-the-art techniques,
our localization method does not require the wearable sensors
and the prior knowledge of a subject’s height, making it
applicable to unknown scenes. The through-the-lens control
mode enables the user to design the viewpoint for a moving
subject in real-time.
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