
Pre-silicon Formal Verification of JTAG Instruction
Opcodes for Security

Nicole Fern
ECE Department

University of California Santa Barbara, USA
Email: nicole@ece.ucsb.edu

Kwang-Ting (Tim) Cheng
Hong Kong University of

Science and Technology, Hong Kong
Email: timcheng@ust.hk

Abstract—Widely implemented standards such as IEEE 1149.1
(JTAG) and 1687 (iJTAG) are essential in providing improved
chip and board testability, but it has been demonstrated that
undocumented or poorly obfuscated scan and debug instructions
can be exploited by hackers to undermine system security.
Prior work proposes adding authentication or encryption to
JTAG to improve security, but these methods can only protect
functionality known to the design and test team. Out-of-spec
JTAG functionality can be inserted accidentally or with malicious
intent (e.g. hardware Trojans). Our proposed technique can
detect anomalous JTAG instructions not present in the speci-
fication using commercial formal equivalence checking tools. We
demonstrate the effectiveness of our technique by characterizing
the entire JTAG instruction set space for the OpenSPARC T2
benchmark in a completely automated manner. In the original
design our technique formally proves all undefined opcodes map
to the benign bypass instruction and provides the size and
location within the design hierarchy of all data registers. In a
modified version of the design our technique correctly detects
several undefined opcodes that are used to access the L2 cache,
as well as extra out-of-spec elements in a data register selected
by an existing instruction.

I. INTRODUCTION

IEEE 1149.1, commonly referred to as JTAG (an abbrevi-
ation for Joint Test Action Group) was originally created to
standardize the interface and functionality of boundary scan
architectures to facilitate board-level testing [1]. It has been
widely adopted and the flexibility built into the standard has
allowed debug and test functionality beyond board test to
be provided through the JTAG interface. JTAG can be used
to control built-in-self-test (BIST), observe internal design
registers for debugging, and even write firmware images.

At its inception, JTAG was assumed to be used only for test
and debug purposes, offering no security measures other than
obscurity. Hackers soon realized that JTAG provides access to
powerful hidden test and debug commands and have been able
to successfully reverse engineer obfuscated and undocumented
JTAG implementations to gain unintended system access (e.g.
load unsigned code [2], recover encryption keys [3], and
perform memory forensics during device operation [4]).

Discovering the set of available test and debug commands
through exhaustive exploration of every possible instruction
opcode is key to attacking system security via JTAG [5].
Figure 1 shows a block diagram of on-chip JTAG circuitry.
The Test Access Port (TAP) controller state machine directs

Instruction Register (IR)

IR Decode Logic

Other Data Registers...

BYPASS Reg.

Boundary Scan Reg.

Data Registers

JTAG Control Unit

Test Access Port
(TAP) Controller

TDI

TRST

TMS
TCK

TDO

Fig. 1. JTAG Circuitry

the updating, capturing, and shifting data in/out of various
registers based on the JTAG interface inputs. JTAG registers
are chains of scan flip-flops and can be divided into an
Instruction Register (IR) and Data Registers (DRs). In IEEE
1149.1, an opcode loaded into the instruction register selects
a specific data register (e.g. the bypass or boundary scan
register). An attacker will explore every instruction opcode
to discover data registers that leak information or provide the
ability to modify design state.

To prevent an attacker from discovering invasive JTAG
commands, disabling/removing the test interface before de-
ployment and adding access control mechanisms or circuitry
monitoring for malicious access patterns have been proposed
[6], [7]. There also exist several pre-silicon verification tech-
niques specifically targeting test and debug circuitry [8], [9],
[10]. These methods are presented in more detail in Sections
II-B and II-C, but it should be noted that to the best of our
knowledge there are no methods which analyze JTAG circuitry
to identify extra anomalous instruction opcodes or data reg-
isters. Existing pre-silicon verification techniques for JTAG
focus on verifying the correctness of the set of instructions
and data registers listed in the specification (but do not identify
extra circuitry outside the spec), while prior defense techniques
assume the set of implemented instructions is correct and
focus on restricting usage of this functionality by adding extra
protection circuitry.

Paper 8.3
978-1-5386-8382-8/18/$31.00 c©2018 IEEE

INTERNATIONAL TEST CONFERENCE 1

JTAG
Control Unit

JTAG
Control Unit

Data
Registers

Full Chip

Pre-Silicon JTAG Instruction
Opcode Analysis

Step 1: Partition opcode
space into defined and
undefined instructions

Step 2: Find size and
location of selected data
register for each opcode

Non-BYPASS
opcodes

List of defined
instructions

+

Size and
location of data

registers

IR signal name

Fig. 2. Overview of Proposed JTAG Instruction Set Analysis Technique

Threat Model: Our technique identifies anomalous JTAG
instructions and data registers in the design before tape-out.
Anomalous instructions include those implemented using op-
codes that are undefined/unused according to the specification.
Anomalous data registers are those that are a different size
than outlined in the specification, or contain scan cells from
locations in the design that are unexpected given the purpose
of the data register. These out-of-spec commands may be
included by accident due to misinterpretation of the specifi-
cation, miscommunication between different design teams, or
inserted with malicious intent.

The increased controllability and observability JTAG pro-
vides through pins exposed at the board level makes it an
attractive target for malicious modification. Such modifica-
tions, known as hardware Trojans, can be inserted by any
party with access to the design [11]. Hundreds of engineers
and a wide array of 3rd party design tools have access to the
design before fabrication and the ability to insert additional
JTAG functionality not listed in the written specification or
Boundary Scan Description Language (BSDL) file. Unused
opcodes provide an opportunity to add secret backdoors into
a chip even if access control mechanisms protect a subset
of privileged instructions because its impossible to protect
functionality you don’t know about.

Regardless of their source, out-of-spec commands have the
potential to be abused by an attacker if they are not discovered
and either removed or protected adequately using an existing
access control technique before tape-out. Automated formal
characterization of the entire JTAG instruction space, including
both specified and undefined/unused opcodes, is the main
feature of our proposed method and can be employed by
the design verification team to increase confidence that the
JTAG functionality is Trojan-free and bug-free. Our technique
extracts knowledge about implemented functionality directly
from the design and is not limited to analyzing only known
instructions making it ideal for addressing Trojans hiding in
unused instruction opcodes. By clearly listing the number
and nature of implemented JTAG instructions our technique
enables automated comparison against the BSDL file, useful
for regression testing, as well as easy manual checking against
the written specification.

Method Overview: Figure 2 provides an overview of the
proposed method. First, the set of opcodes that do not map
to the bypass instruction are identified using formal logic
equivalence checking. If an instruction is formally proven to
be identical to bypass it is benign and does not require further
analysis. The second step is to extract properties of the data
registers corresponding to the instructions found in the first
step. The analysis output is 1) a list of instructions which are
not identical to bypass, and 2) the size of each instruction’s
corresponding data register along with the design modules
where scan cells in the data register reside and a list of signals
used to implement the instruction. This information can be
verified against the specification.

Despite the use of formal methods, our technique is scalable
to large SoC designs because we perform logic equivalence
checking between two nearly identical circuits, which can be
solved efficiently for industry-scale designs by commercial
tools such as Cadence Conformal [12]. Moreover, our method
is highly automated, only requiring the identification of the
instruction register signal. Because it is a pre-silicon verifica-
tion technique, no additional circuitry is required to improve
design security, making our technique applicable to low-cost
embedded designs.

The main contributions of our work are the following:
• A highly automated pre-silicon formal verification tech-

nique capable of detecting both Trojans hiding within
undefined instruction opcodes and accidentally included
out-of-spec functionality

• Use of commercial formal equivalence checking tools
for analysis making the proposed technique scalable to
industry SoC designs

• Demonstration of the potential of our technique to detect
maliciously inserted out-of-spec JTAG functionality in
the OpenSPARC T2 SoC, which contains a rich JTAG
instruction set

The rest of the paper is organized as follows: Section II
explores related work in attacking, defending, and verifying
JTAG, Section III presents our instruction characterization
technique in a tool agnostic manner while Section IV details
how to implement our technique using Cadence Conformal.
Our technique is demonstrated on an OpenSPARC T2 SoC
design in Section V and in Section VI we conclude.

II. RELATED WORK

A. Attacking JTAG

Known techniques for attacking a system through the JTAG
interface fall into the following categories:

1) Reverse engineering obfuscated JTAG functionality to
gain unintended system access (e.g. [5], [13], [2], [4])

2) Analyzing scan chain data to recover encryption keys
(e.g. [3], [14], [15], [16])

3) Inserting hardware Trojans to attack JTAG [17]
In Category 1, the attacker has extremely limited knowledge

about the debug and test infrastructure. The main security
mechanism protecting the test infrastructure in many consumer

Paper 8.3 INTERNATIONAL TEST CONFERENCE 2

electronic products is obfuscation of both the location of
the test interface pins on the PCB board and the set of
implemented JTAG commands. To identify the JTAG interface
there are push-button hardware solutions available for purchase
such as JTAGulator [18] as well as projects such as JTAGenum
[19], which provide code to leverage popular development
boards (e.g. Arduino) to find the test interface.

Once the JTAG interface has been found, the attacker
will identify the length of the instruction register (IR) then
exhaustively explore the instruction opcode space to identify
any useful undocumented commands using the techniques
presented in [5]. Such undocumented commands have played
a central role in gaining unauthorized read/write access to a
bitstream in a military grade FPGA [13], running unsigned
software on the Xbox 360 [2], and performing online forensics
on SDRAM and Flash memory in embedded systems [4].

Attacks targeting encryption key recovery (Category 2)
using scan chain data have been actively researched [3].
These attacks combine scan chain data with knowledge about
properties and common implementations of specific encryption
algorithms to extract the key despite the fact that the signals
selected for scan and their ordering in the scan chain are
unknown to the attacker. Scan chain attacks have been suc-
cessfully applied to AES [14], ECC [15], and RSA [16], and
often work even in the presence of partial scan, test response
compaction, and X-masking.

Category 3 assumes the attacker has the ability to insert
or modify circuitry in a subset of chips sharing a boundary
scan chain. In [17], Trojan-infected chip(s) on the boundary
scan path drive JTAG control signals to non-infected (victim)
chip(s) in order to snoop sensitive data between the tester
and victim chip(s) or alter test responses. The electrical drive
strength of the tester and Trojan-infected chip determines
attack feasibility. Trojans modifying the JTAG controller cir-
cuitry itself are not considered.

In this work, we propose and address the threat of Trojans
implementing malicious functionality using undefined JTAG
instruction opcodes. By formally finding all implemented in-
structions and their associated data registers our technique can
detect these Trojans as well as find any instructions uninten-
tionally left in the design. Any extra functionality implemented
using undefined opcodes can potentially be discoverable by
hackers using Category 1 attack methods if not identified
using our technique and either removed or protected by access
control mechanisms.

B. Securing JTAG

Given the number and successfulness of attacks outlined in
Section II-A, other mechanisms besides security through ob-
scurity are necessary to protect system test and debug circuitry.
Chen et. al. give an overview of existing defense techniques,
which range from disabling the test and debug interface via
fuses before product deployment to adding authentication-
based access control and data encryption [6]. Completely
disabling test/debug pins prevents most attacks through the
JTAG port, but removes the opportunity for in-field failure

diagnosis, configuration, and updates. Protection schemes such
as locking iJTAG segment insertion bits (SIBs) [20] and
scrambling scan chain data or ordering (e.g. [21]) using a key
are more lightweight than full blown authentication schemes
(e.g. [22], [17]), which require hardware implementations of
cryptographic primitives, but are vulnerable to replay attacks.

For all key-based defense schemes, key management is
an issue, and there is the risk of compromise if every chip
has the same programmed key. [7] takes a different approach
and observes that authorized users know the functionality of
JTAG instructions beforehand whereas attackers exhaustively
explore different configurations, and these access patterns can
be differentiated during device operation via machine learning
using special circuitry to implement the classifier.

In relation to these existing techniques, this work provides a
different form of security. We prove the absence of instructions
not listed in the specification, and increase confidence in
the correctness of the implemented functionality, while other
defense techniques assume this already and focus on restricting
access to the implemented test features by adding additional
circuitry. Our technique should be applied alongside JTAG
protection circuitry for designs that can afford the addition of
defense circuitry, but since our verification technique does not
increase silicon area or circuit design time it can also easily
be applied to low-cost embedded systems where protection
circuitry is not viable.

C. Verifying JTAG

There are several works which focus on pre-silicon verifi-
cation methods for JTAG. [8] uses formal methods to verify
access control properties for restricted JTAG registers, but
requires the set of restricted registers to be known ahead
of time whereas our proposed technique does not make any
assumptions about the instructions or data registers and per-
forms a complete characterization of the space. One possible
application of our method is to use the identified set of data
registers as input to the method detailed in [8].

The pre-silicon JTAG verification tool presented in [9]
checks compliance with the 1149.1 standard and the BSDL
file for the design, but states in a footnote that “while the tool
can verify instruction opcodes of arbitrary length, the tool does
not verify that each unspecified instruction opcode selects the
bypass register.” For verification of IEEE 1687 (iJTAG) cir-
cuitry [10] proposes a technique to verify functionality at SoC
level using IP-level Instrument Connectivity Language (ICL)
and Procedural Description Language (PDL) files, but it is not
clear if the technique can identify out-of-spec instructions not
present in the ICL or PDL files.

III. INSTRUCTION SET CHARACTERIZATION

As shown in Figure 2, our methodology consists of 2 steps:
1) Identifying instruction opcodes whose behavior is not

identical to the bypass instruction
2) Extracting data register characteristics
In most JTAG implementations unused/undefined opcodes

are required to map to the bypass instruction. The bypass

Paper 8.3 INTERNATIONAL TEST CONFERENCE 3

JTAG Controller

IR

inputs

XOR
SAT?

Opcode to Verify

JTAG Controller

IR0xff (BYPASS)

Fig. 3. Pairwise Opcode Comparison Equivalence Checking Formulation

instruction selects a single bit data register which passes Test
Data In (TDI) directly to Test Data Out (TDO), as seen in
Figure 1. The bypass instruction is benign because the internal
design state is not revealed or modified. One assumption our
technique makes is that the bypass instruction is implemented
correctly and does not contain hidden functionality. By for-
mally proving different opcodes map to this instruction, we can
conclude that no hardware Trojans or out-of-spec instructions
are implemented using these opcodes.

Step 2 analyses the set of non-bypass opcodes, found in
Step 1, and for each opcode produces a list containing the
full hierarchical path name of signals used to implement the
instruction. These signals include control bits and data register
signals, and can be used to find all data registers in the JTAG
implementation. This signal list can be used to quickly identify
any anomalies such as too many or too few scan flip-flops in
a given data register or flip-flops located in a portion of the
design unrelated to the instruction’s functionality.

A. Instruction Opcode Space Analysis

Opcode space characterization only requires analyzing the
JTAG Controller module (circuitry bounded by the blue box
in Figure 1), not the entire design. The control signals which
select a data register to connect to the TDI and TDO pins,
and the signals from the TAP Controller directing capture,
shift, and update operations are all outputs of the JTAG control
unit. Any opcodes formally proven to produce JTAG controller
outputs identical to the bypass instruction under all possible
inputs can’t possible produce differences outside the module.

Formally proving two opcodes implement identical func-
tionality can be formulated generally as a satisfiability prob-
lem, and more specifically as an equivalence checking prob-
lem. Figure 3 shows the basic formulation. Two copies of the
JTAG controller are created, and in one copy the instruction
register is hard-coded to the bypass instruction opcode, and in
the other the IR is assigned the opcode under verification. If
the two design versions are proven to be equivalent (the output
of the XOR unsatisfiable), then the opcode under verification
maps to bypass.

Complexity: Pairwise comparison of every possible IR
value against the bypass opcode requires 2n − 1 calls to the

JTAG Controllerinputs

XOR

Assigned by
Equivalence Checker

JTAG Controller

Forced to BYPASS

IR
AND

SAT?

Output 0 if IR value
already returned as

counterexample

Fig. 4. Identifying Non-BYPASS Opcodes Using Counterexample Exclusion

equivalence checker, where n is the number of bits in the
instruction register. Although the JTAG instruction register
is typically much smaller than the IR in a general purpose
processor architecture, the complexity can still be prohibitive.
The number of defined opcodes is typically less than the
number of unused opcodes. For example, the OpenSPARC T2
JTAG instruction register is 8 bits, meaning there is a total of
256 possible opcodes, but only 86 map to unique instructions.
This observation can be used to overcome the complexity of
pairwise comparison.

Formulation Using Counterexample Exclusion: An al-
ternate formulation is given in Figure 4. Instead of fixing the
output of the instruction register inside the JTAG controller
module, the IR is made a primary input in both design
versions, however in one version the output of the IR is still
masked with the bypass opcode while in the other version the
IR remains a free input and can be assigned by the equivalence
checking tool when searching for counterexamples.

Counterexamples are patterns of primary input assignments
which produce different outputs in the two design versions
and are used to prove the two designs are not equivalent. In
Figure 4, the first call to the equivalence checker will return
a counterexample which includes a value for the instruction
register. This value could be the opcode for IDCODE, EX-
TEST, or any other instruction that does not map to bypass. To
avoid the equivalence checker returning the exact same opcode
during the second call, a constraint is added to the output (the
green oval in Figure 4) preventing the designs from registering
as non-equivalent under already analyzed opcodes. One more
opcode is added to this set after each call to the equivalence
checker until all non-bypass opcodes have been analyzed and
the designs are equivalent. Using this strategy the number of
calls to the equivalence checker is equal to the number of
defined instructions, which is typically much smaller than 2n.

In comparing the complexity of the two formulations, the
final factor to take into account is opportunity for paralleliza-
tion. Each comparison in the pairwise formulation shown
in Figure 3 is independent and there is no limit to the
number of comparisons that can be run simultaneously. If
255 opcodes need to be compared against the bypass opcode,
the analysis can be run on 255 parallel threads, cores, or

Paper 8.3 INTERNATIONAL TEST CONFERENCE 4

machines. The counterexample exclusion strategy (Figure 4)
can’t be parallelized as the results of the current comparison
are constrained by the results of previous comparisons.

B. Data Register Characterization

In combinational equivalence checking the sequential be-
havior of the design is not taken into account. Any state
elements in the design are cut, meaning flip-flop and latch
inputs become pseudo-primary outputs (PPOs), and outputs
become pseudo-primary inputs (PPIs). During the pairwise
comparison of two non-equivalent opcodes, the equivalence
checking tool will return a list of outputs (which include
PPOs) present in both designs, called key points, that differ.
When one of the opcodes is bypass, this signal list consists of
input signals to scan flip-flops in the data register selected by
the non-bypass opcode and any additional registers or control
signals related to the non-bypass instruction.

Because data register logic is not guaranteed to reside
entirely within the JTAG control unit, the entire design must be
analyzed using the pairwise equivalence checking formulation
shown in Figure 3 in order to identify these non-equivalent key
points. While full chip analysis is significantly more complex
than analyzing the JTAG control unit, it only has to be per-
formed for opcodes which do not map to bypass. Additionally,
since the instruction register is the only signal altered, the two
design versions being compared are nearly identical, which is
precisely the case commercial logic equivalence checking tools
are optimized for as the primary application for equivalence
checking technology is to check conformance of a synthesized
design with the original RTL code.

C. Extension to IEEE 1687 (iJTAG)

Because of the variety of functionality accessible through
the JTAG interface, another standard, IEEE 1687 (iJTAG) [23]
exists to allow dynamic configuration of the scan network
using data registers instead of requiring a fixed instruction set.
This is accomplished through the use of Segment Insertion
Bits (SIBs), which when set expand the 1687 gateway data
register to include different functionality, referred to as test
instruments. The 1687 gateway register is accessed like a
typical 1149.1 data register and can be used to access the
hierarchy of test instruments. Because scan chain configuration
is no longer dependent only on the value of the instruction
register, the space which must be explored by our verification
method has to include SIBs in addition to bits in the instruction
register. This has the potential to significantly increase the
complexity of the technique and may be an ideal application
for the counterexample exclusion formulation.

IV. ADAPTION TO CONFORMAL LEC

While any equivalence checking tool can be used to perform
our analysis method, Cadence Conformal Logic Equivalence
Checker (LEC) [12] is widely used in industry for verification
of logic synthesis transformations. The robust front-end Ver-
ilog and VHDL parser, structural design analysis capabilities,

1 /// Mark modules which should be black-boxed
2 add notranslate modules [module names] -design -Both
3
4 /// Read same design for both Golden and Revised
5 read design [list of design files] -Verilog -Golden

-root [top module] -define [macro]=[value] ...
6 read design [list of design files] -Verilog -Revised

-root [top module] -define [macro]=[value] ...
7
8 /// Make IR a primary input in both Golden and

Revised
9 set system mode setup

10 add primary input instr[*] -golden
11 add primary input instr[*] -revised
12
13 /// Constrain IR (hard-code to specific op-code)
14 /// Golden: 0xff, Revised: 0x0
15 set system mode setup
16 delete pin constraints -all_pin -module [top module]

-golden
17 delete pin constraints -all_pin -module [top module]

-revised
18 add pin constraints 1 instr[7] instr[6] instr[5]

instr[4] instr[3] instr[2] instr[1] instr[0] -
module [top module] -golden

19 add pin constraints 0 instr[7] instr[6] instr[5]
instr[4] instr[3] instr[2] instr[1] instr[0] -
module [top module] -revised

20
21 ///Perform Equivalence Checking
22 set system mode lec
23 add compared points -all
24 compare
25
26 ///Run Diagnosis
27 diagnose -noneq

Fig. 5. Example LEC Dofile for JTAG Analysis

and rich diagnosis features make LEC an ideal tool for the full
chip analysis necessary to characterize JTAG functionality.

In the previous section, we presented a pairwise equivalence
checking formulation (Figure 3) for opcode space analysis
and data register characterization, as well as a formulation
involving counterexample exclusion (Figure 4) for opcode
space analysis. This section provides the LEC commands used
to implement both analysis strategies in an efficient manner
by walking through an example command file run by LEC
(referred to as a “dofile”) shown in Figure 5.

Loading the Design: Lines 1-6 in the dofile specify how
to read and elaborate the design. LEC allows macro definition
and black-boxing specific modules (e.g. memories) to control
the configuration of the design and which portions are an-
alyzed. For JTAG instruction set characterization, the exact
same design is read for both the Golden and Revised designs.

Constraining IR: While Figure 3 shows the instruction
register hard-coded in the Golden and Revised designs, it is
more efficient to make IR a primary input then constrain the
input to two different values. This removes the need to aug-
ment the RTL code itself and load the entire design into LEC
for every opcode pair comparison. Lines 1-11 are only run
before the first comparison, which when performing full chip
analysis saves a significant amount of time. The commands
in Lines 10-11 cut the design to make the instruction register
signal a primary input in both design versions, and Lines 16-19
constrain individual bits in the IR signal to specific values.

Paper 8.3 INTERNATIONAL TEST CONFERENCE 5

Equivalence Checking and Diagnosis: In Lines 22-24
the equivalence checking of all corresponding key points in
Golden and Revised designs is performed. Key points in LEC
are all primary outputs, flip-flops, latches, black-box, and cut
points present in the design. LEC will match key points in the
Golden design with those in the Revised design (in our case
the designs are nearly identical) then check the equivalence of
the logic cone for each key point. Non-equivalent key points
can be analyzed using the diagnose command (shown in
Line 27). This command will list the full hierarchical signal
names of the non-equivalent key points which is useful for
data register characterization.

Examples of the report produced by the diagnose com-
mand can be seen in Figures 8, 9, and 10. Because the format is
parsable, the information provided by the report can be further
condensed and transformed to be more human-readable to aid
in manual verification. If the documentation specifying data
register length and location within the design hierarchy is also
parsable the verification check can be completely automated
for use in regression testing.

Counterexample Exclusion: Constructing the formulation
involving counterexample exclusion (Figure 4) using LEC re-
quires the ability to ignore equivalence checking results under
certain conditions. The $constraint function is an undocu-
mented LEC feature which forces LEC to ignore counterexam-
ples that do not satisfy the constraint. For example, inserting
$constraint(IR != 8’b0 && IR != 8’b1) in the
design source code forces LEC to ignore counterexamples
where the IR opcode is 0 or 1. Unfortunately the constraint
function must be placed with the source code and the design
must be reloaded when new constraints are added.

V. OPENSPARC T2 EXPERIMENT

OpenSPARC T2, a full SoC design that has been included
in commercial products [24], is an ideal benchmark to evaluate
our technique because it contains a rich JTAG instruction set.
Figure 6 provides a block diagram of the full SoC architecture.
For the full chip analysis in this experiment we select the
option to instantiate only 1 SPARC Core instead of 8 and
black-box the L2 cache banks and the memory control units
(MCUs). The analyzed design contains 683 primary inputs,
389 primary outputs, and 257152 state elements (flip-flops
and latches). The JTAG controller is contained within the Test
Control Unit (TCU). The JTAG instruction register is 8 bits,
meaning there is a total of 256 possible opcodes, but according
to the specification [25] only 86 map to unique instructions.

Table I summarizes the results of performing opcode anal-
ysis and data register characterization on the OpenSPARC
T2 design. Out of the 256 opcodes analyzed, 171 map to
BYPASS. With the exception of a single opcode (discussed
further in Section V-A), the list of undefined opcodes matches
the specification exactly. The pairwise opcode comparison
strategy is used, and even without parallelization only takes a
little over a minute to complete. Analyzing the 84 non-bypass
opcodes to extract data register characteristics requires the
entire SoC design and takes over a day. The reports produced

Fig. 6. OpenSPARC T2 SoC Architecture [25]

TABLE I
OPENSPARC T2 EXPERIMENT RESULTS SUMMARY

Experiment Description Top-level
Module

Opcodes
Analyzed

Analysis
Time

Opcode Analysis JTAG
Controller 256 61.73 sec

Data Reg. Characterization Entire SoC 84 31.4 hrs

by this effort (detailed further in Section V-B) can be easily
interpreted by an engineer who is not familiar with the debug
logic for manual comparison against the written specification
or used as input to further automated analysis comparing the
extracted information to the BSDL file.

Trojan Insertion: In addition to analyzing the original de-
sign, we insert additional out-of-spec functionality to illustrate
how our verification technique can highlight Trojans in the
JTAG circuitry. The modifications of the design include:

1) Mapping undefined opcodes 0xa5, 0xa6, 0xa7, and
0xa8 to the TAP L2 ADDR, TAP L2 WRDATA,
TAP L2 WR, and TAP L2 RD instructions

2) Adding 32 extra bits to the IDCODE data register
The motivation behind mapping undefined opcodes to ex-

isting instructions is circumvention of access control circuitry.
The instructions chosen allow complete access to the L2 cache.
If the test and debug circuitry is protected presumably these
instructions will not be accessible to an unprivileged user. By
assigning “shadow” opcodes to implement this functionality,
an attacker knowledgable about this Trojan or able to find the
Trojan opcodes through exhaustive exploration will still be
able to access the L2 cache through JTAG even though the
original opcodes have been marked as protected functionality.

Increasing the length of the IDCODE data register high-
lights the ability of our technique to identify extra functionality
in existing instructions. The IDCODE register is read-only and
contains a number used to identify the device and manufac-

Paper 8.3 INTERNATIONAL TEST CONFERENCE 6

TROJAN-FREE DESIGN

Op-code(s) Equivalent

to BYPASS?

0x00-0x06 N
0x07 Y
0x08-0x0a N
0x0b Y
0x0c-0x10 N
0x11-0x12 Y
0x13-0x16 N
0x17 Y
0x18-0x1f N
0x20-0x27 Y
0x28-0x38 N
0x39-0x3f Y
0x40-0x46 N
0x47 Y
0x48-0x4a N
0x4b Y
0x4c-0x52 N
0x53-0x57 Y
0x58-0x5b N
0x5c-0x5f Y
0x60-0x65 N
0x66-0x7f Y
0x80-0x84 N
0x85-0x87 Y
0x88-0x89 N
0x8a-0x8f Y
0x90 N
0x91-0x9f Y
0xa0-0xa4 N
0xa5-0xff Y

172 out of 256 opcodes
EQUIVALENT to BYPASS.
84 out of 256 opcodes
NOT EQUIV. to BYPASS.

TROJAN-INFECTED DESIGN

Op-code(s) Equivalent

to BYPASS?

0x00-0x06 N
0x07 Y
0x08-0x0a N
0x0b Y
0x0c-0x10 N
0x11-0x12 Y
0x13-0x16 N
0x17 Y
0x18-0x1f N
0x20-0x27 Y
0x28-0x38 N
0x39-0x3f Y
0x40-0x46 N
0x47 Y
0x48-0x4a N
0x4b Y
0x4c-0x52 N
0x53-0x57 Y
0x58-0x5b N
0x5c-0x5f Y
0x60-0x65 N
0x66-0x7f Y
0x80-0x84 N
0x85-0x87 Y
0x88-0x89 N
0x8a-0x8f Y
0x90 N
0x91-0x9f Y
0xa0-0xa8 N
0xa9-0xff Y

168 out of 256 opcodes
EQUIVALENT to BYPASS.
88 out of 256 opcodes
NOT EQUIV. to BYPASS.

Fig. 7. Opcode Maps for Trojan-free and Trojan-infected OpenSPARC T2
JTAG Instructions (differences highlighted using bold font)

turer. In OpenSPARC this register is 32 bits, but the inserted
Trojan extends this register to be 64 bits. Possible uses for
the extra 32 bits include leaking information from the design
normally not accessible via scan.

A. Instruction Opcode Space Analysis

Instruction opcode space analysis uses the JTAG controller
(tcu_jtag_ctl) as the top-level module. Comparison of
every opcode against 0xff (BYPASS) is accomplished using
Cadence Conformal LEC commands similar to the example
dofile in Figure 5. Our technique summarizes the comparison
results by producing opcode maps, shown in Figure 7, which
can be quickly checked against the JTAG instruction summary
table in Section 4.2.3 of the specification [25].

In the Trojan-free original design all instructions equivalent
to bypass are undefined in the specification except for opcode
0x91, which implements the TAP STCI CLEAR instruction.
Even though this instruction is defined, the specification states
it “clears STCI mode for SERDES Test Configuration In-
terface Bus,” and also mentions that “to clear JTAG access
to STCI, use TAP STCI CLEAR or reset the TAP state
machine” meaning simply mapping this instruction to bypass
makes sense.

1 Opcode: 0x8 (TAP_CREG_ADDR)
2 # NEq: PO=0 DFF=43 DLAT=0 BBOX=0 CUT=0 Total=43
3
4 DFF /tcu/jtag_ctl/.../bypass_reg/d0_0/q_reg[0]
5 DFF /tcu/jtag_ctl/.../bypass_ll_reg/d0_0/q_reg[0]
6 DFF /tcu/jtag_ctl/tap_cregaddr_shift_reg/d0_0/q_reg[39]
7 DFF /tcu/jtag_ctl/tap_cregaddr_shift_reg/d0_0/q_reg[38]
8 ...
9 DFF /tcu/jtag_ctl/tap_cregaddr_shift_reg/d0_0/q_reg[0]

10 DFF /tcu/jtag_ctl/tap_creg_addr_en_reg/d0_0/q_reg[0]
11
12 Opcode: 0x9 (TAP_CREG_WDATA)
13 # NEq: PO=0 DFF=67 DLAT=0 BBOX=0 CUT=0 Total=67
14
15 DFF /tcu/jtag_ctl/.../bypass_reg/d0_0/q_reg[0]
16 DFF /tcu/jtag_ctl/.../bypass_ll_reg/d0_0/q_reg[0]
17 DFF /tcu/jtag_ctl/tap_cregwdata_shift_reg/d0_0/q_reg[63]
18 DFF /tcu/jtag_ctl/tap_cregwdata_shift_reg/d0_0/q_reg[62]
19 ...
20 DFF /tcu/jtag_ctl/tap_cregwdata_shift_reg/d0_0/q_reg[0]
21 DFF /tcu/jtag_ctl/tap_creg_data_en_reg/d0_0/q_reg[0]
22
23 Opcode: 0xa (TAP_CREG_RDATA)
24 # NEq: PO=0 DFF=67 DLAT=0 BBOX=0 CUT=0 Total=67
25
26 DFF /tcu/jtag_ctl/.../bypass_reg/d0_0/q_reg[0]
27 DFF /tcu/jtag_ctl/.../bypass_ll_reg/d0_0/q_reg[0]
28 DFF /tcu/jtag_ctl/tap_cregrdrtrn_shift_reg/d0_0/q_reg[64]
29 DFF /tcu/jtag_ctl/tap_cregrdrtrn_shift_reg/d0_0/q_reg[63]
30 ...
31 DFF /tcu/jtag_ctl/tap_cregrdrtrn_shift_reg/d0_0/q_reg[0]

Fig. 8. Data Register Characterization Report for Register Debug Instructions

The undefined opcodes utilized by Trojan circuitry are
successfully identified using our technique. The opcode map
produced for the Trojan-infected design, shown on the right-
hand side of Figure 7, states there are 88 opcodes not equiva-
lent to bypass, while in the Trojan-free design there are only
84. The last 2 lines of the Trojan-infected design opcode map
reveal the extra 4 opcodes are 0xa5-0xa8, which are precisely
the opcodes chosen to implement shadow access instructions
to the L2 cache.

B. Data Register Characterization

The 84 non-bypass opcodes identified in the Trojan-free
design are analyzed using the pairwise comparison formulation
shown in Figure 3. The entire SoC is analyzed to extract the
list of key points differentiating the opcode under verification
with the bypass instruction. Due to the complexity of analyzing
the full chip design (logic for 235089 key points must be
analyzed) the 84 opcodes are divided into 6 batches of 14
opcodes analyzed using 6 parallel instances of LEC on a Dell
PowerEdge R730 machine running Ubuntu 16.04 containing
32GB of memory and 20 Intel Xeon CPU E5-2650 v3 cores.
6 is chosen as the number of parallel instances because each
LEC process takes approximately 5GB of memory, putting the
total memory utilization at 30GB.

Due to space limitations, the full results for all 84 opcodes
in the Trojan-free design are not given, but instead a select
few are presented in detail showing the information provided
by our technique along with details for the 5 opcodes used
to implement Trojans. Figure 8 shows a portion of the results
file for 2 instructions in the Trojan-free design which select
JTAG data registers containing the address and write data for

Paper 8.3 INTERNATIONAL TEST CONFERENCE 7

1 Opcode: 0x01 (TAP_IDCODE)
2 # NEq: PO=0 DFF=66 DLAT=0 BBOX=0 CUT=0 Total=66
3
4 DFF /tcu/jtag_ctl/.../bypass_reg/d0_0/q_reg[0]
5 DFF /tcu/jtag_ctl/.../bypass_ll_reg/d0_0/q_reg[0]
6 DFF /tcu/jtag_ctl/tap_idcode_reg/d0_0/q_reg[63]
7 DFF /tcu/jtag_ctl/tap_idcode_reg/d0_0/q_reg[62]
8 ...
9 DFF /tcu/jtag_ctl/tap_idcode_reg/d0_0/q_reg[0]

Fig. 9. Data Register Characterization Report for Trojan-infected Design:
IDCODE Instruction

accessing design configuration registers for debugging through
the Non-Cacheable Unit (NCU) (a bus connecting various
SoC components). The full hierarchical signal names and type
(D flip-flop, latch, black box, etc.) of the non-equivalent key
points are provided using the diagnose command in LEC.

Analysis results for the TAP CREG ADDR instruction
(Lines 1-10 in Figure 8) show that a total of 43 key points
are non-equivalent to bypass. Some of the hierarchical signals
paths are abbreviated for compact formatting. The first 2 points
(Lines 4-5) are signals related to the bypass instruction, which
are expected to differ when comparing against a non-bypass
opcode. The next 40 points (Lines 6-9) correspond to the 40-
bit CREG Address data register. A list of JTAG data registers
can be found in Section 4.2.4, Table 4-4 of [25]. The final non-
equivalent point (Line 10) is an enable bit, presumably used
to place the address on the NCU interconnect after the address
bits have been scanned into the CREG Address register.

Results for the TAP CREG WDATA instruction (Lines 12-
21) are similar, except that the CREG Write Data register is
64 bits instead of 40 bits. The length of the CREG Write Data
register is clearly shown by our analysis as well as the
exact location of the register in the design hierarchy. The
TAP CREG RDATA opcode results (Lines 23-31) reveal that
the CREG Read Data register is 65 bits. The specification
states that one of the bits is used as a sentinel to indicate the
availability of the read data, explaining why the write and read
data registers are not the same size.

Trojan-infected Design Analysis Results: Figure 9 shows
the analysis results the TAP IDCODE instruction. The in-
serted Trojan extends this register from 32 to 64 bits and this
is clearly reflected from just a quick glance at the results.
Opcodes 0xa5-0xa8 are undefined in the original design but
map to existing L2 cache access instructions in the Trojan-
infected version. The signals identified in Figure 10 point
to the L2 cache as the target of the modification. Opcodes
0xa5 and 0xa6 implement instructions to load an address and
write data into JTAG registers which access the L2 cache.
Opcode 0xa7 initiates the write operation, and opcode 0xa8
both initiates the read operation and captures the data read
from the cache into a JTAG data register.

In addition to clearly detecting functionality implemented
using undefined opcodes, the analysis results for these L2
cache access instructions illustrate the potential of our tech-
nique to verify properties of JTAG instructions already present
in the specification (the analysis of the original opcodes for

1 Opcode: 0xa5 (Mapped to TAP_L2_ADDR)
2 # NEq: PO=0 DFF=67 DLAT=0 BBOX=0 CUT=0 Total=67
3 DFF /tcu/jtag_ctl/.../bypass_reg/d0_0/q_reg[0]
4 DFF /tcu/jtag_ctl/.../bypass_ll_reg/d0_0/q_reg[0]
5 DFF /tcu/jtag_ctl/tap_l2access_shift_reg/d0_0/q_reg[64]
6 DFF /tcu/jtag_ctl/tap_l2access_shift_reg/d0_0/q_reg[63]
7 ...
8 DFF /tcu/jtag_ctl/tap_l2access_shift_reg/d0_0/q_reg[1]
9 DFF /tcu/regs_ctl/tcuregs_l2addrupd_syncreg/xx0/q_reg

10
11 Opcode: 0xa6 (Mapped to TAP_L2_WRDATA)
12 # NEq: PO=0 DFF=67 DLAT=0 BBOX=0 CUT=0 Total=67
13
14 DFF /tcu/jtag_ctl/.../bypass_reg/d0_0/q_reg[0]
15 DFF /tcu/jtag_ctl/.../bypass_ll_reg/d0_0/q_reg[0]
16 DFF /tcu/jtag_ctl/tap_l2access_shift_reg/d0_0/q_reg[64]
17 DFF /tcu/jtag_ctl/tap_l2access_shift_reg/d0_0/q_reg[63]
18 ...
19 DFF /tcu/jtag_ctl/tap_l2access_shift_reg/d0_0/q_reg[1]
20 DFF /tcu/regs_ctl/tcuregs_l2dataupd_syncreg/xx0/q_reg
21
22 Opcode: 0xa7 (Mapped to TAP_L2_WR)
23 # NEq: PO=0 DFF=4 DLAT=0 BBOX=0 CUT=0 Total=4
24
25 DFF /tcu/jtag_ctl/.../bypass_reg/d0_0/q_reg[0]
26 DFF /tcu/jtag_ctl/.../bypass_ll_reg/d0_0/q_reg[0]
27 DFF /tcu/regs_ctl/tcuregs_l2vld_syncreg/xx0/q_reg
28 DFF /tcu/regs_ctl/tcuregs_l2wr_syncreg/xx0/q_reg
29
30 Opcode: 0xa8 (Mapped to TAP_L2_RD)
31 # NEq: PO=0 DFF=69 DLAT=0 BBOX=0 CUT=0 Total=69
32
33 DFF /tcu/jtag_ctl/.../bypass_reg/d0_0/q_reg[0]
34 DFF /tcu/jtag_ctl/.../bypass_ll_reg/d0_0/q_reg[0]
35 DFF /tcu/jtag_ctl/tap_l2access_shift_reg/d0_0/q_reg[64]
36 DFF /tcu/jtag_ctl/tap_l2access_shift_reg/d0_0/q_reg[63]
37 ...
38 DFF /tcu/jtag_ctl/tap_l2access_shift_reg/d0_0/q_reg[0]
39 DFF /tcu/regs_ctl/tcuregs_l2vld_syncreg/xx0/q_reg
40 DFF /tcu/regs_ctl/tcuregs_l2rd_syncreg/xx0/q_reg

Fig. 10. Data Register Characterization Report for Trojan-infected Design:
Opcodes 0xa5-0xa8 (Mapped to L2-cache Access Instructions)

these instructions would yield an identical report). Our analysis
reveals that the address, write data, and read data registers are
all implemented using the same shift register (Lines 5-8, Lines
16-19, and Lines 35-38 in Figure 10 refer to the same 65 bit
signal), however the control signals (Lines 9, 20, and 39-40)
are different between the instructions.

Interestingly these registers are all 65 bits, but the least
significant bit (q_reg[0]) does not appear in the results for
the address and write data registers. After consulting the data
register table (Table 4-4 in Section 4.2.4 of [25]) it is revealed
that the least significant bit is not used in the address and write
data registers but is used by the read data register to indicate
when data in bits 64:1 are valid. Although this seemingly
anomalous functionality turned out to be within spec, the
ease with which our results can be manually scanned for
irregularities demonstrates how our technique can be harnessed
for verification in addition to Trojan detection.

This unique use of LEC diagnosis information enables fast
verification of the data register set and can be further processed
for automated comparison against the BSDL file. Suspicious
signals are easy to identify as most instructions select data
registers comprised of signals clustered in a few modules. Any
additional signals, added accidentally or malicious intent can
be removed before tape-out.

Paper 8.3 INTERNATIONAL TEST CONFERENCE 8

VI. CONCLUSION

A scalable automated method is presented to analyze JTAG
circuitry pre-silicon in order to identify out-of-spec instruc-
tions with the potential to pose security risks to the system.
This paper is the first to focus on identifying extra test and
debug instructions not present in the specification as well as
verifying the correctness of already specified functionality. In
addition to providing a tool agnostic verification formulation
for JTAG instruction set characterization, we detail how exist-
ing commercial logic equivalence checking tools can be lever-
aged to ensure efficient chip-level analysis for industry scale
designs. We demonstrate the effectiveness of our technique by
performing complete verification of the OpenSPARC T2 JTAG
instruction opcode space. Our technique identifies the set of
defined opcodes by formally proving these opcodes are not
equivalent to the bypass instruction, and provides information
about data registers and control logic corresponding to each
defined instruction. In the original Trojan-free OpenSPARC
design, our results verify the opcode space matches the
specification. Our method also successfully detects malicious
functionality implemented using undefined opcodes as well
as the modification of an existing data register in a Trojan-
infected version of the design.

VII. ACKNOWLEDGEMENTS

This work was supported by NSF/SRC STARSS (1526695)
and a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No.
HKUST 16207917).

REFERENCES

[1] “IEEE standard for test access port and boundary-scan architecture,”
IEEE Std 1149.1-2013, pp. 1–444, May 2013.

[2] SMC Xbox Hack. [Online]. Available: http://free60.org/wiki/SMC Hack
[3] J. Da Rolt, A. Das, G. Di Natale, M.-L. Flottes, B. Rouzeyre, and I. Ver-

bauwhede, “Test versus security: past and present,” IEEE Transactions
on Emerging Topics in Computing, vol. 2, no. 1, pp. 50–62, March 2014.

[4] M. Breeuwsma, “Forensic imaging of embedded systems using JTAG
(boundary-scan),” Digital Investigation, vol. 3, no. 1, pp. 32–42, 2006.

[5] F. Domke, “Blackbox JTAG reverse engineering,” in Proceedings of the
26th Chaos Communication Congress (CCC), 2009.

[6] W. Chen, J. Bhadra, and L.-C. Wang, “SoC security and debug,” in
Fundamentals of IP and SoC Security: Design, Verification, and Debug,
S. Bhunia, S. Ray, and S. Sur-Kolay, Eds. Springer, Janurary 2017,
ch. 3, pp. 29–48.

[7] X. Ren, V. G. Tavares, and R. Blanton, “Detection of illegitimate access
to JTAG via statistical learning in chip,” in Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2015, pp. 109–114.

[8] M. A. Kochte, R. Baranowski, M. Sauer, B. Becker, and H. J. Wunder-
lich, “Formal verification of secure reconfigurable scan network infras-
tructure,” in Proceedings of the 21th IEEE European Test Symposium
(ETS), May 2016, pp. 1–6.

[9] K. Melocco, H. Arora, P. Setlak, G. Kunselman, and S. Mardhani, “A
comprehensive approach to assessing and analyzing 1149.1 test logic,”
in Proceedings of the 2003 International Test Conference (ITC), vol. 2,
September 2003, pp. 40–49.

[10] T. Payakapan, S. Kan, K. Pham, K. Yang, J. F. Cote, M. Keim, and
J. Dworak, “A case study: leverage IEEE 1687 based method to automate
modeling, verification, and test access for embedded instruments in a
server processor,” in Proceedings of the 2015 IEEE International Test
Conference (ITC), October 2015, pp. 1–10.

[11] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware trojans: lessons learned after one decade of research,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 22, no. 1, pp. 6:1–6:23, May 2016.

[12] Cadence. Conformal Equivalence Checker. [Online].
Available: https://www.cadence.com/content/cadence-www/global/
en US/home/tools/digital-design-and-signoff/equivalence-checking/
conformal-equivalence-checker.html

[13] S. Skorobogatov and C. Woods, “Breakthrough silicon scanning discov-
ers backdoor in military chip.” in Procedings of the 2012 Conference on
Cryptographic Hardware and Embedded Systems (CHES), ser. LNCS,
E. Prouff and P. Schaumont, Eds., vol. 7428. Springer, 2012, pp. 23–40.

[14] S. S. Ali, O. Sinanoglu, S. M. Saeed, and R. Karri, “New scan-based
attack using only the test mode,” in Proceedings of the 21st IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC),
October 2013, pp. 234–239.

[15] J. Da Rolt, A. Das, G. Di Natale, M.-L. Flottes, B. Rouzeyre, and
I. Verbauwhede, “A scan-based attack on elliptic curve cryptosystems in
presence of industrial design-for-testability structures,” in Proceedings of
the 2012 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT). IEEE, 2012, pp. 43–48.

[16] J. Da Rolt, A. Das, G. Di Natale, M.-L. Flottes, B. Rouzeyre, and
I. Verbauwhede, “A new scan attack on rsa in presence of industrial
countermeasures,” in Proceedings of the 2012 International Workshop
on Constructive Side-Channel Analysis and Secure Design. Springer,
2012, pp. 89–104.

[17] K. Rosenfeld and R. Karri, “Attacks and defenses for JTAG,” IEEE
Design & Test of Computers, vol. 27, no. 1, 2010.

[18] Grand Idea Studio. JTAGulator. [Online]. Available: http://www.
grandideastudio.com/jtagulator

[19] JTAGenum. [Online]. Available: https://github.com/cyphunk/JTAGenum
[20] A. Zygmontowicz, J. Dworak, A. Crouch, and J. Potter, “Making it

harder to unlock an LSIB: Honeytraps and misdirection in a P1687
network,” in Proceedings of the 2014 Conference on Design, Automation
& Test in Europe (DATE), 2014, pp. 195–201.

[21] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing designs
against scan-based side-channel attacks,” IEEE Transactions on Depend-
able and Secure Computing, vol. 4, no. 4, pp. 325–336, Oct 2007.

[22] C. Clark, “Anti-tamper JTAG TAP design enables DRM to JTAG
registers and P1687 on-chip instruments,” in Proceedings of the 2010
IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), June 2010, pp. 19–24.

[23] “IEEE standard for access and control of instrumentation embedded
within a semiconductor device,” IEEE Std 1687-2014, pp. 1–283, Dec
2014.

[24] Oracle. OpenSPARC T2. [Online]. Available: http://www.oracle.com/
technetwork/systems/opensparc/opensparc-t2-page-1446157.html

[25] OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification,
Revision A ed., Sun Microsystems, Inc., May 2008.

Paper 8.3 INTERNATIONAL TEST CONFERENCE 9

